Feeds:
Posts
Comments

Posts Tagged ‘sustainability’

Ships of the desert grazing near deserted ships in Aral Sea desert

Baikonur Cosmodrome, Kazakhstan – First ever window to space. Beginning of the space age was one of the greatest achievements of mankind since the dawn of civilization. Many space scientists, explorers and researchers had gone through the arid steppes of this small Central Asian town. That list includes Sputnik scientists, Yuri Gagarin and many of the International Space Station travelers.


Double Humped Wild Bactrian Camels grazing near abandoned ships in Aral Sea desert

Just 250 km north west of Baikonur lies another small town, supposed to be on the banks of Aral Sea, named Aralsk. Aral Sea was the 4th largest lake by area and 12th largest lake by volume until 1960. It had an area of 68000 square kilometers and a volume of 1100 cubic kilometers. The lake had one third salinity of sea water at around 10g/L. It was fed by two of the largest river ecosystems of Central Asia namely Amu Darya and Syr Darya. Historically known as Oxus and Jaxtares, these two rivers were very famous throughout the Achaemenid Persian, Greek and Arab periods. Amu Darya and Syr Darya have a mean discharge of 97.4 cubic kilometers and 37 cubic kilometers respectively. Source of their water is from the glaciers of Pamir and Tian Shan mountains. Rain water could not contribute much as these steppes are extremely arid with a rainfall of around 30 cm / 12 inches. Temperature could go anywhere between -45 Degree Celsius to 45 Degree Celsius depending upon seasons.

Aral Sea is shared between both Kazakhstan and Uzbekistan. Until around 1960 two towns flourished on the banks of Aral Sea, Aralsk on the north east in Kazakhstan and Muynak on the south west in Uzbekistan. Both were important fishing towns with harbors and processing industry. Uzbekistan used to get around 60% of their fish, that is 25000 tonnes of fish from Aral Sea itself

Things started changing around 1955-1960 when Soviet Union started to improve their agriculture output. Many dams and canals were built to divert large amount of water for irrigation. This reduced the amount of water reaching Aral Sea drastically and Aral Sea started getting dried up very fast. Currently Aral sea got split up into 4 lakes including North Aral Sea and South Aral Sea with a total area of around 6800 square kilometers which is only 10% of its original size. Lake salinity got increased to around 100g/L destroying all fish in the lake.


Aral Sea: Map vs. Satellite image

Cotton Production:

Cotton production also took off like the Soviet space program during 1960s. Uzbekistan’s production increases from 300000 MT in 1950 to around 3 Million MT in mid 1980s. Most of the the cotton was cultivated as a monoculture without crop rotation. This required huge amount of pesticides and chemical fertilizers. Lots of pesticides and fertilizers reached Aral Sea due to run off. Cotton requires large amount of water and virtually all of this water is sourced from Amu Darya and Syr Darya.

Per Capital Water Usage:

Central Asian countries of Turkmenistan, Kazakhstan and Uzbekistan have the highest per capital water usages. Most of the water is sourced from Amu Darya and Syr Darya and used for irrigating cotton plantations.


Per Capital Water Usage of Countries

Environmental issues:

There are many environmental problems associated with aral sea crisis. Farming without crop rotation depletes soil of nutrients and increases the salt content in the soil. Cotton production of Uzbekistan went down by half from its peak values during 1980s.

Aralkum is the new desert appeared on the dried up seabed of Aral Sea. It is estimated that Aralkum has an area of around 55000 square kilometers. It is a mixture of sand, salt, run-off pesticides and fertilizers. About 200000 Tonnes of salt and sand are carried by the wind from Aral Sea everyday and dumped withing 300 km radius. This pollution is decreasing available agricultural area due to salt content. This increases respiratory problems in people. There have been instances of this pollution reaching as far as the Arctic north of Russia.

A view from Muynak Port in Uzbekistan: abandoned ships

Difference approaches of Kazakhstan and Uzbekistan

Out of all countries in the Amu Darya and Syr Darya region, Kazakhstan is taking some effort to restore North Aral Sea. They have created Kok Aral Dam in 2005 with the help of World Bank spending $64 Million. This dam traps water from Syr Darya and redirect it back to North Aral Sea. Due to this water levels in North Aral Sea is increasing and its salinity is going down. Aralsk used to be around 100 km away from North Aral Sea in 2005, but after the construction of the Dam it is around 6 km away. Also area of North Aral Sea got increased from around 2550 square km in 2003 to 3300 square km in 2008.

Cranes near dried up Aral Sea in Aralsk port, Kazakhstan

On the other side, Uzbekistan has not done anything practically to restore Aral Sea. Some figures says that around 50000 people of Karakalpakstan region of Uzbekistan have already left their places due to pollution.

Hope Central Asian countries would give more importance to restoring Aral Sea to its original form.

Read Full Post »

Astronomy is a wonderful field. From History it could be easily seen that Astronomy is the cradle of both Physics and Mathematics. Most of the early phisicists and mathematicians were astronomers too. All astronomical observations from prehistorical times to 1609 were exclusively using naked eye. Those early astronomers had no access to telescopes or cameras or any other sophisticated equipment that we have now. But instead they had access to the most important requirement in Astronomy and that is what we miss now even though we have state of the art equipment: Clear Dark Skies. Astronomy is extremely sensitive to Light Pollution.

In a clear dark sky, one could see around 5600 stars with a maginude of up to 6.0. But in a typical urban environment of today it gets limited to around magnitude 3.0 and the number of visible stars to around 100 or so. Courtsey of Light Pollution.

That is one side of Light Pollution. On the other side we have tremendous amount of energy waste. Studies by US Department of Energy shows that, there are around 52.6 Million Street Lights in US alone. Energy consumption of Street Lights and Parking Lot Lights in the US reaches to around 52 Billion KWh per annum. As far as Carbon Dioxide is concerned, that itself could generate around 40 Million Tonnes of CO2 per year.
Energy Saving Estimates in US (Section 3.2.1)
Lighting Energy Consumption in US (Table Appendix G-5)

Light Pollution has a lot of ecological effects also. Animals, Plants, Insects etc. could get confused by light. Wikipedia has an interesting article on Ecological impact of light pollution.
Ecological Light Pollution on Wikipedia

Do we really need to illuminate the world like this?

Usage of modern street lights became popular more than 100 years before when personal hand-held light sources like flashlights/torches were either unavailable, expensive or inefficient. Modern electronic control systems were also absent at that time. All these technologies could be combined to reduce both energy consumption and light pollution without jeopardizing safety and security.

  • Use lower power and higher efficient light sources like Light Emitting Diodes.
    Many of the standard street lights use around 150W lamps, by replacing them with higher lumen/Watt LED lamps lot of electricity could be saved. Also LED lamps could be dimmed very easily by controlling individual diodes
  • Usage of yellowish higher Color Temperature light sources to reduce scattering and sky glow.
    For example whiter Mercury fluorescent light is more scattered than yellow Sodium light. Because of this reasons, Sodium lamps are used near many of the astronomical observatories. Sodium light is more monochromatic so that it could be filtered out very easily. LED lighting could be made with higher Color Temperature to reduce sky glow
  • Better fixtures so that light is pointed down where it is required, reducing light leakage
  • Limiting the usage of decorative flood lights and illumination by passing required laws and regulations.
    They look great, but waste a lot of energy and create a lot more light pollution
  • Unlike olden times personal LED flashlights are extremely efficient and ubiquitous, even the el cheapo mobile phones nowadays have LED flashlights, so encourage their usage.
  • Context sensitive and intelligent lighting control systems for dimming and controlling light sources.
  • Using Thermal imaging and Night Vision devices for safety and security applications so that dependency on visible lighting could be avoided or reduced.
  • Efficient usage of Daylight Saving Time
    It is proven that aligning business hours with daylight reduces energy usage

Read Full Post »

World Energy Consumption: 2250 Tsar Bombs or 18800 WW2

I like history. Recently I was reading about the 50th anniversary of Tsar Bomba, tested on 1961 October 30 by Soviet Union. Tsar Bomba is the single most powerful thermonuclear weapon ever used. It has a power of 50 to 57 megatons of TNT (210 PJ) which is 10 times the combined power of all explosives used in Second World War or around 3000 times as powerful as the Hiroshima bomb.
Tsar Bomba Video

Tsar Bomba was a part of the Sabre Rattling and display of power during the Cold War and Nuclear Arms Race. Both USSR and the US had a total stockpile of around 25000 megatons of nuclear weapons and the world was at the brink of nuclear war a few times. There were numerous Peace Advocates, Environmentalists and Anti Nuclear Activists protesting against Nuclear Arms Race and Cold War.
Nuclear Arms Race
Nuclear Weapons Stockpile

That was history, but at the same time I thought about the current energy scenario. How is the World energy consumption compared against this powerful bomb. Initially, I was thinking that energy output of the Tsar Bomba could be enough for a few months or or at least a few weeks at the rate of current energy consumption. After doing some calculation, it was totally surprising.

World Energy Consumption

Total energy consumption of the world is around 15TW (15 * 10^12) now, coming to around 474 exajoules (474 * 10^18) per year (From Wikipedia). As of now, more than 80% of this comes from fossil fuels, mainly coal, petroleum and natural gas. All of them are non renewable and produce green house gases. Let us see how 15TW or 474 exajoules compared against these powerful nuclear weapons.

In terms of tons of TNT
It comes to 3.59 kilotons of TNT per second or 113200 megatons of TNT per year.

Mass Energy Equivalence, using Einstein’s equation
Completing transforming 1kg of mass per 100 minutes, that means 5250 kg (11600 lbs) yearly.

Hiroshima Bombs of around 18 kilotons
One Hiroshima Bomb has to be detonated per 5 seconds. That is 6300000 Hiroshima Bombs in one year.

Total Second World War Explosives
Total explosives used in Second World War was around 6 megatons. More Details
We have to conduct a Second World War in every 28 minutes or 18800 Second World Wars in one year for the same amount of energy.

Tsar Bomba
Out of all bombs, this would produce the maximum mileage of around 4 hours per Tsar Bomb. That means detonating around 2250 Tsar Bombs yearly.

Total Nuclear Explosions
Total Nuclear Explosions carried out by all countries would come close to around 510 megatons. More Details
These 510 megatons could take us for around 40 hours. That has to be repeated 222 times to meet our yearly consumption.

Total Nuclear Stockpile of 25000 megatons
Our yearly energy consumption is 4.5 times of the much critized stockpile.

A few thoughts

Just think, how the reaction would be if a country try to detonate even a small nuclear device. All the environmentalists, peace activists, nuclear and war opponents would definitely make it a big issue. There have been many programs like SALT, START, etc. to reduce the Nuclear Stockpile.

But, the above mentioned nuclear weapons look very small compared to our energy requirement and no one is talking about reducing our energy consumption rate. Policy makers try to promote the idea that both GDP and Development are directly proportional to Energy Consumption, just like the computer processor makers used the Megahertz Myth during 1990s to show case that more CPU clock frequency means more performance. Since it is not practical to increase the clock rate above 3.5 GHz, they themselves stopped it afterwards.

So, at the current rate, our energy consumption looks like a war against our own Mother Nature. Normally, every war strategy planner try to think about supply lines and resources – Does it look the same with this energy war? Is it sustainable, could we afford this much of pollution and environmental destruction?

It is an excellent decisions to use more and more Renewable sources like, solar, wind etc. But at the same time, we must also try to limit this insanely high energy consumption.

Read Full Post »

Why we require localized food and energy production

Yet another Gandhi Jayanti has come. In the wake of sustainability and issues like global warming, teachings of Mahatma Gandhi is becoming more and more important.

Some of the Inspirational words of Mahatma Gandhi on Grama Swaraj (Village Self Governance), Sustainability etc.

“The true India is to be found not in its few cities, but in its seven hundred thousand villages. If the villages perish, India will perish too.”

“We have to show them that they can grow their vegetables, their greens, without much expense, and keep good health….”

“Earth provides enough to satisfy every man’s need, but not every man’s greed”

According to Gandhiji, each village should be basically self-reliant, making provision for all necessities of life – food, clothing, clean water, sanitation, housing, education and so on, including government and self-defence, and all socially useful amenities required by a community.
Gandhi’s Concept of Gram Swaraj

If we look at the current scenario, it is essential to include clean technologies and localized sustainability also to the vision of Mahatma Gandhi. Let us see more on some of the important items.

Increasing Localized food production:

Localized food production should be encouraged to the maximum. This would definitely boost local economy. From a pure consumer point of view, one could get much better and fresher food items. From environmental point of view, this could reduce a lot of emission and pollution arising from the usage of fossil fuels for transportation. The extra cost and wastage arising from paper and plastic food packaging materials also could be reduced.
The Localization of Agriculture

Localized Energy Revolution:

Clean Energy Generation is getting a great momentum nowadays. Looking from a broader perspective, clean energy could be divided into two separate streams. They are

  1. Large Solar and Wind Farms owned and operated by big companies.
  2. Small Distributed Rooftop Solar systems and Micro Wind turbines owned and operated by mainly residential customers.

It can be easily seen that the localized option is fully in alignment with Gandhiji’s dream: Self reliance, sustainability – Apart from generating one’s own food and clothes, generate one’s own energy also.

Let us see some advantages of small distributed generation.

  • Common people are very much invloved. It is real democracy: Simply speaking, “Energy of the people, by the people, for the people”
  • More local job creation, which would improve local economy.
  • If a proper financial model is setup, that would boost local banks and finance institutions.
  • Minimal land requirement. Most of the rooftops are unused anyway. But, large farms do require a lot of land. Even though in many cases, these farms are constructed on barren and arid land unusable for anything else, still that is nothing but real encroachment on nature.
    Battle Brewing Over Giant Desert Solar Farm
  • Around 400 Million people in India do not have electricity and majority of them are in villages. This is a unique scenario to India. Large Solar/Wind farms would not make any difference to these people, instead they would cater only the established traditional urban customer bases. But small scale systems could revolutionize these villages.
  • Large Solar/Wind farms are the Clean versions of centralized generation. Apart from reducing/stopping carbon dioxide emissions, they have every other problems of large centralized power generation. They are prone to political issues. They depend on national grid to reach customers, which would effectively increase grid congestion, transmission and distribution losses etc. To minimize these issues, setting up and maintainance of new grid would be required. But for small distributed systems, a minimal micro grid would do the real work.
    Solar Subsidy in India Bias of Large Solar Farms unwisely goes against the Global Trend of Rooftop Solar System Support
  • Large centralized systems are like big brand department stores. They use Client Server approach. Electricity is ‘going’ in only one direction, from producer to consumer. Whereas small systems are like ebay or skype. They use Peer to Peer model. Producer and consumer distinction and their separation is reduced. More of using the Shortest Path approach. This model has many advantages during failures and problems.

This does not mean that large solar/wind farms are not necessary, but small distributed systems genuinely require a lot of attention and that should be given.

Read Full Post »

%d bloggers like this: